Simple Crack Models Explain Deformation Induced by Subduction Zone Megathrust Earthquakes
نویسندگان
چکیده
Following the 2010 Maule and 2011 Tohoku earthquakes, many studies have examined the relation between megathrust earthquakes and subsequent deformation. Here, we apply simple models based on mode II shear cracks, including approximated effects of the free surface to study induced deformation during coseismic and early postseismic stages. We distinguish between buried and surface ruptures represented by a full-crack and a half-crack model, respectively. We adopt an analogybased approach to interpret the half-crack model from well-known results of the full-crack model, which is also validated by our numerical simulations. With transferable knowledge between the two models, we provide easy ways to understand (1) the contrasting deformation patterns in the frontal wedge of the overriding plate between buried ruptures and surface ruptures, (2) the correlation between triggered outer-rise normal faulting and surface ruptures, and (3) the similar deformation patterns for both buried and surface ruptures toward the down-dip end, with a preference for normal faulting in the overriding plate and for reverse faulting in the subducting plate. These model outcomes are consistent with several recent observations on aftershocks and veins in a paleoaccretionary wedge. We further investigate some important transient features during rupture propagation which show that a transition from compressional to extensional deformation in the frontal wedge of the overriding plate is possible even during a single rupture event. Our work provides alternative views for understanding various aspects of subduction zone megathrust earthquakes and raises the issue of important transient features that were typically ignored in previous studies.
منابع مشابه
Depth-varying rupture properties of subduction zone megathrust faults
[1] Subduction zone plate boundary megathrust faults accommodate relative plate motions with spatially varying sliding behavior. The 2004 Sumatra-Andaman (Mw 9.2), 2010 Chile (Mw 8.8), and 2011 Tohoku (Mw 9.0) great earthquakes had similar depth variations in seismic wave radiation across their wide rupture zones – coherent teleseismic short-period radiation preferentially emanated from the dee...
متن کاملLinking megathrust earthquakes to brittle deformation in a fossil accretionary complex
Seismological data from recent subduction earthquakes suggest that megathrust earthquakes induce transient stress changes in the upper plate that shift accretionary wedges into an unstable state. These stress changes have, however, never been linked to geological structures preserved in fossil accretionary complexes. The importance of coseismically induced wedge failure has therefore remained l...
متن کاملCompressive sensing of frequency-dependent seismic radiation from subduction zone megathrust ruptures
Megathrust earthquakes rupture a broad zone of the subducting plate interface in both along-strike and along-dip directions. The along-dip rupture characteristics of megathrust events, e.g., their slip and energy radiation distribution, reflect depth-varying frictional properties of the slab interface. Here, we report high-resolution frequency-dependent seismic radiation of the four largest meg...
متن کاملEnhancing quantum sensing
Sediments tell a tsunami story Trying to understand where major earthquakes and tsunamis might occur requires analysis of the sediments pouring into a subduction zone. Thick sediments were expected to limit earthquake and tsunami size in the Sumatran megathrust event in 2004, but the magnitude 9.2 earthquake defied expectations. Hüpers et al. analyzed sediments recovered from the Sumatran megat...
متن کاملSlow earthquakes linked along dip in the Nankai subduction zone.
We identified a strong temporal correlation between three distinct types of slow earthquakes distributed over 100 kilometers along the dip of the subducting oceanic plate at the western margin of the Nankai megathrust rupture zone, southwest Japan. In 2003 and 2010, shallow very-low-frequency earthquakes near the Nankai trough as well as nonvolcanic tremor at depths of 30 to 40 kilometers were ...
متن کامل